Machines and Mechanisms

https://www.amazon.com/addi-990-2-addi-Express-Professional-Knitting/dp/B000XT3OPG

Dobby Loom

۲

0

AVA ANI LOOMS

99

https://www.youtube.com/watch?v=HPQbKTJPsU4

What is a Machine?

Basic' Machines

$F_L d_L = F_e d_e$

Work and Energy

- Energy converted to work
 - Force x Distance
 - Torque x Angle
- **Transforming power**
 - Change force: Fout / Fin
 - Change distance or speed: dout / din
- Mechanical advantage

$I_{S} V_{S} = I_{P} V_{P}$ $V_{S} = N_{S}/N_{P} V_{P}$

Gears

Clock Change rate of motion

Transmission Change speed and power

Pulleys

Lathe - Change cutting speed

Kinematic Chains

Linkages and Mechanisms

Reuleaux believed that machines could be abstracted into chains of elementary links called kinematic pairs. Constraints on the machine are described by constraints on each kinematic pair, and the sequence of movements of pairs produces a kinematic chain.

Franz Reuleaux (1829-1905)

Converting Motion

- Linear to rotary
 - Windmill
 - Water wheel
 - Steam/Combustion engine
- Linear to rotary
 - Piston and engine crank

https://en.wikipedia.org/wiki/Watt%27s_linkage

Boulton-Watt Steam Engine

Three revolute joints (R) and one prismatic joint (P)

Leo Dorst's Lego Peaucellier Cell

1.16

Michael Gasperi's Lego Rack and Pinion Steering

Pantograph

Four-Bar Linkage

https://en.wikipedia.org/wiki/Four-bar_linkage

Thang's 2700 Animated Mechanical Mechanisms

Table of Contents

2. Converting continuous rotation into interrupted rotation	4
2.1. Tooth-uncompleted gears	4
2.2. Geneva drives	14
2.3. Ratchet drives	25
2.4. Pin drives	37
2.5. Bars	41
2.6. Combined mechanisms	43
3. Converting continuous rotation into rotary oscillation	45
3.1. Bars	45
3.2. Gears	51
3.3. Cams	53
3.4. Belts and cables	56
3.5. Combined mechanisms	58
4. Altering rotary oscillations	64
5. Converting continuous rotation into linear motion	69
5.1. Bars	69
5.2. Gears	85
5.3. Bars and gears	89
5.4. Cams	99
5.5. Chains	110
5.6. Friction drives	112
6. Converting rotary oscillation into linear motion and vice versa	113
6.1. Gears	113
6.2. Bars, cams	120
6.3. Screws	123
6.4. Belts and cables	130
7. Rotation to wobbing motion	134

Types of cams

• Different shaped cams are used for different tasks:

Computational Design of Mechanical Characters

Stelian Coros*1	Bernhard Thomaszewski ^{*1} Robert W. Sumner ¹	Gioacchino Noris ¹ Wojciech Matusik ³	Shinjiro Sueda ² Bernd Bickel ¹	Moira Forberg ²
	¹ Disney Research Zurich	² Disney Research Boston	³ MIT CSAIL	
			~	

Figure 1: The interactive design system we introduce allows non-expert users to create complex, animated mechanical characters.

Abstract

We present an interactive design system that allows non-expert users to create animated mechanical characters. Given an articulated character as input, the user iteratively creates an animation by sketching motion curves indicating how different parts of the character should move. For each motion curve, our framework creates an optimized mechanism that reproduces it as closely as pos-

1 Introduction

Character animation allows artists to bring fictional characters to life as virtual actors in animated movies, video games, and liveaction films. Well-established software packages assist artists in realizing their creative vision, making almost any digital character and movement possible. In the pl Screenshot I, animatronic figures play an equivalent role in theme parks and as special ef-

Cylinder Music Box

Washing Machine Sequencer (1970ish)

https://en.wikipedia.org/wiki/Cam_timer

BASIC MECHANISMS IN FIRE CONTROL COMPUTERS Part 1 0:05 / 6:14 CC

What is a Machine?

Finite-State Machine

From: Computation: Finite and Infinite Machines

References

Basic Machines, NAVEDTRA 14037

Computation: Finite and Infinite Machines, M. Minsky

Videos

Mechanical computers

Web sites

<u>http://507movements.com</u>

Thang's animations